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Intro to computational de-novo enzyme design w
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Computational Enzyme Design
Previous achievements
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Design of novel ester hydrolases

New Target reaction: ester hydrolysis
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Why ester hydrolysis? =2 Bechmark for computational enzyme design

«Computational design is a new technique with room for improvement
Ester hydrolysis is one of the best studied reactions in (bio)chemistry

sLarge amount of structural and biochemical data on natural esterases exists

=>How well can we recreate natural esterases using computational design?




Design of novel ester hydrolases w

Reaction mechanism: an ester/amide gets split into an acid an an
alcohol/amine

Key features:
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Design of novel ester hydrolases w

Choice of theozyme

Natural hydrolase active sites:
-often use Ser or Cys as nucleophile

*Nucleophile activated by His or other protic residue
*Feature oxyanion-stabilizing elements (“oxyanion-hole™)

Design theozyme

*Cys as nucleophile (higher intrinsic nucleophilicity than Ser)

*His as proton shuttle (protonate leaving group, deprotonate water)
*Backbone-NH as oxyanion stabilizer




Design of novel ester hydrolases

28 designs were tested, 4 had activity

(coloring: scaffold x-ray / design model)

Scaffold: galacturonide binding protein Scaffold: Trp — tRNA synthetase
11 Mutations 20 Mutations
Catalytic site: E161C / M226H / Q163G Catalytic site: Q9C / Y125H



Design of novel ester hydrolases

In-detail characterization of 4 active designs w

1. Are they active for the right reason?
=>» yes, catalytic residue knock-outs suggest activity is due to designed site

2. How active are they?
2> k. /Ky ~102 M7 s
=>» < natural hydrolases, = other computational de-novo designs
= 2-phase kinetics observed (fast acylation / slow deacylation)

3. Does the catalytic mechanism work as designed?

= covalent intermediate detected by Mass spectrometry
= designs react with nucleophile-specific probe as good as natural cys hydrolases

4. Does the structure look as designed?
= X-ray structure elucidation
= Molecular dynamics simulations



2.5. Does the structure look as designed?

Crystal structures of the 4 designs were determined

(coloring: design x-ray / design model)
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Overall shape of active site retained (Ca RMSD 0.97A ECH13, 1.5A ECH19)
*Cys in designed conformation

*His not in designed conformation, facilitated by small backbone shift
*Suggests reason for low overall activity and deacylation problems

In collaboration with A. Kuzin, L. Tong, et al, Northeast Structural Genomics Consortium (NESG)



Esterase design conclusions w

*Successfully designed esterase active site into 4 inert scaffolds

*Scaffolds are structurally unrelated
=»suggests we can design basic esterase catalytic machinery

*Crystal structures of designs and slow deacylation kinetics indicate that
the biggest problem is the improperly positioned catalytic histidine

=>» attempts to improve the activity should thus focus on fixing the
histidine position

*Designs are (relatively) bad catalysts but excellent nucleophiles
=>» Shows that nucleophilicity # nucleophilic catalysis
=>» Suggest nucleophiles easier to design than catalysts



2. Design of organophosphate binders w

» Organophosphates (OPs): Chemical warfare agents that inhibit esterases involved
in synaptic transmission

* Act by covalently and irreversibly modifying the active site Serine catalytic
nucleophile
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*A protein designed to react with OPs faster than native esterases could be used as
a scavenger

*OP binding requires good nucleophile -> cys esterase results suggests design
feasible

*OP transition state (TS) geometry different than ester hydrolysis TS geometry
=>»Designs targeted towards OP-TS might have advantages vs. native esterases

(with Sridharan Rajagopalan)



2. Design of organophosphate binders w

*De novo enzyme design protocol was carried out for organophosphate binding

b Theozyme used features a third residue (D/E/H)
-w-ﬁ?s-zg. w to ensure histidine is positioned properly

FP-ligand

*Experimental setup: in gel screening with a fluorescently labeled OP probe
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2. Design of organophosphate binders w

* ~100 designs made, 4 active, OSH55 is most promising
Small (165AA), highly expressible, thermophilic scaffold

Crystal structure confirms designed conformation
=>»backing up histidine worked

*Knockouts confirm necessity of designed residues for OP binding

OP binding Crystal / Design
(with Sridharan Rajagopalan)
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2. Design of organophosphate binders w

*(Irreversible) OP binding easily accessible to high-throughput yeast display assay
*OSH55 library (6 binding site res randomized) was prepared and selected
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* One clone found to react with OP faster than natural
esterase!
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De novo Enzyme Design w
Conclusion

Can new enzymes be designed from scratch computationally?

*good: succesfully done for 5 very different reactions (deprotonation, C-C bond
breaking, C-C bond forming, ester bond breaking, OP breakdown)

less good: activity far below natural enzymes.
=» several factors important for catalysis not modeled yet
(differential stabilization, substrate access, dynamics, etc..

=>Long way to go till routine de-novo design of efficient catalysts

*However, if targets are picked wisely, useful molecules can be designed
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Questions?




