Multi-State Design of Antibody-Antigen Interactions Confers Conformational Flexibility Hypothesis

> Jordan Willis Crowe Lab Meiler Lab RosettaCon 2011

Antibody Structure is Constructed through 3 Genes

Heavy chain and light chain joins 3 and 2 gene segments respectively to form combinatorial diversity. Junctions form complimentary determining regions

Antibody Diversity

Segment Count: *Immunobiology* (Janeway) Junctional Diversity

Wednesday, August 24, 11

V-Gene codes for a majority of antibody variable region

Heavy chain variable region

Motivation - HT sequencing reveals progenitor genes

• Crowe lab uses 454 pyro-sequencing to access antibody repertoire of healthy and viral infected patients.

 Antibody repertoire is the same for all healthy patients

Total Reads: 1,965,037

High Quality Reads: 1,868,183

95.1% of all reads are high quality antibody sequences

	Reads	High-Quality Reads
Peripheral Blood	149896	132248
Bone Marrow	171111	156177
Small Intestine	118044	108279
Lung	198660	181299
Lymph Node	165091	152175
Tonsil	197846	180319
TOTAL	1000648	910497

Briney, Willis, Crowe Blood 2011

Antibody Repertoire - VH3-23 dominates

Antibody Repertoire - VH3-23 dominates

Wednesday, August 24, 11

PDB Antibody Repertoire - Recapitulates Sequencing Repertoire

Hypothesis

There exists conformational flexibility on commonly used germline genes that accommodates a variety of antigenic structures. Using multi-state design we can test if germline sequences are optimal to bind a set of native complexes.

Multi-State Design

Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility

Mariana Babor^{1,2} and Tanja Kortemme^{1,2*}

Superimposition of the V_H domain of the germline 7g12 antibody in its bound (pdb: 1n7m) and free (pdb: 1ngz) forms (green and magenta, respectively).

Multi-State Design may reveal promiscuous sequences

Wednesday, August 24, 11

Multi-State Design may reveal promiscuous sequences

VHI-69 Mature Antibody Complexes

Entry (PDB ID)	Antibody Name	Туре	Ligand	Resolution
lg9m	I7b	FAB Kappa	Envelope Glycoprotein gp120 (HXBC2)	2.20
2b4c	X5	FAB Kappa	Envelope Glycoprotein gp120 (JRFL)	3.30
2cmr	D5	FAB Kappa	Gp41 Fusion Intermediate	2.0
2dd8	m396	FAB Lambda	SARS Spike	2.30
2xra	HK20	FAB Карра	Transmembrane protein (synthetic)	2.30
2xtj	ID05	FAB Карра	Proprotein convertase substilin	2.70
3fku	FIO	ScFV Kappa	Hemmaglutanin	3.20
3gbn	CR6261	FAB Lamda	Hemmaglutanin Peptide	2.20
3ma9	8066	FAB Lamda	Transmembrane Glycoprotein	2.05
3mac	8062	FAB Lambda	Transmembrane Glycoprotein	2.50
3nps	S4	FAB Kappa	Suppressor of tumorgenicity protein	I.50
3p30	1281	FAB Lamda	Gp41 Fusion Intermediate	3.30

12 candidate test complexes using VH1-69

VHI-69 Mature Antibody Complexes

Divergent from germline

VHI-69 Multi-State Design

VHI-69 Multi-State Design

Antibody 17b designs towards germline in MSD with correctly designed amino acids shown in dark blue. Incorrect designed are shown in orange

VHI-69 Single-State Design (3GBN)

VHI-69 MSD/SSD Design

Design	Percentage recovered to native	Percentage to VH1-69
MSD of 11VH1-69 States	-	68
Ig9m	68	36
2cmr	71	57
2dd8	71	61
2xra	79	35
2xtj	64	54
3fku	57	36
3gbn	85	50
3ma9	50	42
3mac	64	39
3nps	71	64
3p30	46	39

VHI-69 MSD/SSD Design

VH3-23 Mature Antibody Complexes

Entry (PDB ID)	Antibody Name	Туре	Ligand	Resolution
l s78	Pertuzumab	FAB Kappa	ErbB-2	3.25
2fjg	G6	FAB Kappa	Vascular endothelial growth factor I	2.80
2qqn	Semaphorin Blocking	FAB Lamda	Neurophilin-I	2.20
2r56	lgE Fab Fragment	FAB Kappa	Beta-lactoglublin allergen	2.80
2vxs	Unnamed	FAB Lamda	Interleukin-17A	2.63
2vyr	Unnamed Single VH chain	Single Chain	MDM4 Protein	2.00
3bn9	E2	FAB Kappa	Supressor of tumorigenicity protein 14	2.17
3dvn	Apu2.16	FAB Kappa	Ubiquitin	2.70
3kr3	DX-2647	FAB Kappa	Insulin-like growth factor II	2.20

9 candidate test complexes using VH3-23

VH3-23 Mature Antibody Complexes

Divergent from germline

9 candidate test complexes using VH3-23

VH3-23 Multi-State Design

9 States - VH3-23 fixed backbone

VH3-23 Multi-State Design

Orange - Correct, Red - Incorrect

VH3-23 Single-State Design

VH3-23 MSD/SSD Design

Design	Percentage recovered to native	Percentage recovered to VH3-23
MSD of VH3-23 States	-	60
I S78	46	28
2FJG	64	32
2QQN	47	44
2R56	56	47
2VXS	50	50
2VYR	47	35
3DVN	26	20
3BN9	50	38
3KR3	47	32

VH3-23 MSD/SSD Design

Native Sequence Recovery Average = 48% VHI-69 Recovery Average = 36%

VH5-51 Mature Antibody Complexes

Entry (PDB ID)	Antibody Name	Antibody Description	Ligand	Resolution
2b1a	2219	FAB Lamda	UG1033 Peptide	2.35
2xwt	KI-70	FAB Lamda	TSH-R	I.90
3hmx	ustekinumab Fab	FAB Lamda	IL-12	3.00
2dd8	m396	FAB Lambda	SARS Spike	2.30

4 candidate test complexes using VH5-51

VH5-51 Mature Antibody Complexes

3hmx_input/1-98 2xwt_input/1-98 2b1a_input/1-98 IGHV5-51/1-98

Conservation

Quality Consensus

1 EVQLVQSGAEVKKPGESLKISCKGSGYSFTTYWLGWVRQMPGKGLDWIGIMSPVDSDIR

1 EVQLVQSGAEVKKPGQSLKISCKASGYSLTDNWIGWVRQKPGKGLEWMGILYPGDSDTR

Y S P S FOGOVT + S A D K S I N T A Y LOWS S L K A S D T A M Y Y C A R

VH5-51 Multi-State Design

VH5-51 Single-State Design

R

VH5-51 MSD/SSD Design

Design	Percentage recovered to native	Percentage to VH5-51
MSD of VH5-51 States	_	65
2b1a	82	35
2xwt	82	47
3hmx	82	70

VH5-51 MSD/SSD Design

- Multi-state design recovers sequences closer to germline progenitor.
- Single state design recovers sequences closer to native (mature) antibody sequences, showing an *in silico* maturation.
- Germline sequences are optimally flexible in frequently used germline genes to accommodate binding of many antigens.

- Combine states of frequent and infrequently used germline genes to see which sequences are recovered.
- •Full quanitative workup to find frequently used amino acids (PSSM)
- Iterative relax and MSD to accommodate clashing rotamers and improve sequence recovery.
- Apply MSD to HIV antibodies to bind a diverse panel of antigens

Acknowledgements

David Nannemann, PhD

Mark Hicar MD, PhD

Sam Deluca

Steven Combs

Wednesday, August 24, 11

Acknowledgments.

Crowe Lab

- •Natalie Thornburg PhD
- •Bryan Briney
- •Gopal Sapparapu
- Mohammed Aiyegbo
- •Frances House, MS
- •Fyza Shaikh
- •John Bates, PhD
- •Mark Hicar, MD PhD
- •Lidiya Pundor
- Valentine Chukwuma
- •Scott Smith MD PhD
- •Chelsey Huffman

Kortemme Lab

- •Colin Smith
- Tanja Kortemme

Meiler Lab

- •Will Lowe, PhD
- •Brian Weiner PhD
 - •Carrie Fortenberry MS_•Gordon Lemmon
 - •Jeff Mendenhall
 - •Caitlin Heuberger
 - •Mert Karakas
 - •Nils Woetzal
 - Mariusz Butkiewicz
 - •Steffen Lindert
 - •Julia Koehler
 - •Sten Heinze

Kuhlman Lab

•Brian Kuhlman Andrew Leaver-Fay

- •Elizabeth Dong
- Nathan Alexander
- - •David Nannemann
 - Steven Combs
 - •Sam DeLuca
 - •Stephanie Hirst
 - •Gregory Sliwoski
 - Britney Allison

<u>Spearman Lab, Emory</u>

- •Paul Spearman MD
- •Xuemin Chen

Williams Lab •John Williams MD •Reagan Cox

Funding

- •NIH U01 Clonal Analysis of the Human B-Cell Response
- •NIH U01 Broadly Neutralizing Monoclonal Antibodies to HIV-I
- •HIV Training Grant M&IM (Chris Aiken)

•Mariana Babor

Antibody Diversity

Pejchal et al., PNAS 2010

Gene Usage is Driven by Structure

• Tian et. al reported on healthy and diseased repertoire using Sanger sequencing

Healthy Donor

RSV Infected

Tian et. al Immunologoy 2007