Towards fast and accurate calculation of protein pK_a values

Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins University

RosettaCon 2011

Introduction

• Influences protonation states of residues in proteins

Russell et al. 2008. Proc. Natl. Acad. Sci. USA. 105: 17736 -17741.

pK_a Values For Residues In Proteins

- Acid dissociation constant (pK_a) determines protonation state $[HA] \rightleftharpoons [H^+] + [A^-]$
- Henderson-Hasselbalch equation

 $pH = pK_a + \log\frac{[A^-]}{[HA]}$

• pH at 50% protonation = pK_a

• Residue pK_a in protein \neq Intrinsic pK_a in solution

Current pK_a Prediction Methods

- Current methods
 - 1. continuum electrostatic models (Gunner, Harbury, McCammon etc.)
 - 2. all-atom MD simulations (Case etc.)
 - 3. empirical approaches (Jensen, Hellinga etc.)
- Advantages / Disadvantages
 - LPBE models overestimate charge interactions
 - empirical approaches are much faster
- Rosetta toolset
 - robust score function
 - varying levels of conformational flexibility
 - relatively computationally inexpensive

Protein-water system for FDPB calculations

'pH Score' Captures Residue Protonation State Changes

- pH score
- Protonation probability $f_{\text{prot}} = \frac{1}{10^{\text{pH-Ip}K_{a+1}}}$ (Onufriev et al. 2001)
- $E_{\text{new}} = E_{\text{standard}} + E_{\text{pH}}$

Lowest-Energy Conformation Is Better Than Boltzmann-Weighted Rotamer Frequencies

Lowest-Energy Conformation Is Better Than Boltzmann-Weighted Rotamer Frequencies

• Consistent with previous studies of side-chain entropy (Kortemme *et al.* 2002, Hu *et al.* 2006)

pK_a Prediction vs. Experiment

$$E = E_{\rm std} + E_{\rm pH}$$

Rosetta Standard Energy Function Predicts No pK_a Shifts

$$E = E_{\rm std} + E_{\rm pH}$$

Song *et al.* 2009, Olsson *et al.* 2011

Using Explicit Coulomb Potential Improves pK_a Predictions (hack_elec $\mathbb{E} \propto \frac{q_1q_2}{\epsilon r}$; $\epsilon \propto r$)

$$E = E_{\rm std} + E_{\rm pH}$$

 $E = E_{\rm std} + E_{\rm pH} + E_{\rm elec}$

Recalibrating LK Solvation Reference Energies For New Residue Protonation Variants

• $E_{\text{charged}}^{\text{solv}}$ - $E_{\text{uncharged}}^{\text{solv}}$ ~ 0 when exposed to solvent

• $\Delta E_{\text{residue}}^{\text{solv}} = \sum_{\text{atoms}} (\Delta E_i^{\text{ref}} - \sum_{j \neq i} f_i(r_{ij}) V_j)$ (Lazaridis *et al.* 1999)

Rosetta pH Energy (RPH) Function For pK_a Prediction

$$E = E_{\rm std} + E_{\rm pH} + E_{\rm elec}$$

 $E = E_{\rm std} + E_{\rm pH} + E_{\rm elec} + E_{\rm ref}$

Errors ?

Glu-Glu interaction in Calbindin D9K

Packing Neighbors (6Å): Some Improvements, But Negates pK_a Shifts

Structural Ensemble : Large Range Of Predictions \rightarrow Highly Sensitive To Backbone Conformation

Asp-Asp interaction in RNase H captured with backbone flexibility

His in Phospholipase C is constrained with no room for a proton

Rosetta Accurately Predicts Some Extreme pK_a Shifts

 New mutants of *Staphylococcal nuclease* with dramatic shifts up to 5 pH units (~ 7 kcal/mol) [Bertrand Garcia Moreno lab / JHU]

Application to protein-protein docking

- 30% of interface residues ionizable in Docking Benchmark set
- 90% of interfaces at least one residue changes protonation state (Aguilar *et al.* 2010)
- Docking results with early score function show some improvements (work in progress)

Summary / Future Work

- Explicit electrostatic model is essential for accurate pK_a predictions
- RPH mode predicts pK_a s to 0.81 RMSD, comparable to leading methods
- Higher conformational flexibility
 - 1. Improves accuracy of some pK_a predictions
 - 2. Use of pH mode during ClassicRelax to be tested
- pK_a prediction test can be used to benchmark score functions
- Protonation states may improve docking, folding, and design

Acknowledgments

- Prof. Jeffrey J Gray
- Prof. Bertrand Garcia Moreno
- Ryan Harrison
- Lab members
- NIH R01 GM 078221
- Rosetta Community

Thank You Questions?

Supplemental Data

	Number of	Null	RPH	Neighbor	Ensemble
	χ angles	Model	Function	Repack	Average
Asp	2	0.95	0.77	0.97	0.8
Glu	3	0.86	0.92	1.1	0.95
His	2	0.98	0.79	0.84	0.97
Tyr	2	1.1	0.76	0.76	1.3
Lys	4	0.56	0.67	0.66	0.68
All	-	0.92	0.81	0.93	0.92

Work with Docking benchmark set 3.0

Total number of interface residues (within 5A at the interface)

Туре	All	Enz-inh	Ab-Ant	Others
ASP	6.4	6.9	6	6.2
GLU	6.8	5	5.6	8.2
HIS	2.9	4.2	2.2	2.5
TYR	6.5	6.6	11	5
LYS	6.2	4.6	4.7	7.5
Chargeable %	28.8	27.3	29.5	29.4
Non-chargeable %	71.2	72.7	70.5	70.6

pK_a shifts at interface

Residue	Total no	Neg_shift	Pos_shift	Avg_shift
ASP	360	233	90	0.72
GLU	381	222	132	0.67
HIS	132	71	55	0.89
TYR	328	143	152	0.69
LYS	330	90	211	0.72

Electrostatic model

Rotamer Recovery

rmsd

