Guiding Protein Docking Simulations with Chemical Cross-link Data X QOck Cross linlss RosetaDock + Xwalk

Introduction

- Protein-protein docking troublesome due to large conformational space and imperfect scoring functions
- experimental constraints can be keyin producing cosenative models * NMR,FRET;

Introduction

* Protein-protein docking troublesome due to large conformational space and imperfect scoring functions
- experimental constraints can be keyin producing cosenative models
- NMR, FRET,
* Chemical cross linking coupled to mass spectrometry (XLMS) is another means to obtain distance information.

Introduction

- Protein-protein docking troublesome due to large conformational space and imperfect scoring functions
* experimental constraints can be key y producing close native models
- NMR, FRET,
- Chemical cross linking coupled to nassspectonetry (XUMS) is another means to obtaini distance information
- Often a flexible linearcross linker molecule with reactive ester sites on bothends is used to cross link ysine pairs

Introduction

* Protein-protein docking troublesome due to large conformational space and imperfect scoring functions
* experimental constraints can be key in producing cose native models
- NMR,FRET;
* Chemical cross linking coupled to nass spectronetry (XUMS) is another means to obtain distance information.
- Often a flexible linear cross linker molecule with reactive ester sites on both ends is used to cross link lysine pairs

Introduction

* Protein-protein docking troublesome due to large conformational space and imperfect scoring functions
* experimental constraints can be key y producing close native models
- NMR,FRET;
* Chemical cross linking coupled to nass spectronetry (XUMS) is another means to obtain distance information.
- Often a flexible linearcross linker molecule with reactive ester sites on both ends is used to cross link lysine pairs

Introduction

- Protein-protein docking troublesome due to lárge conformational space and imperfect scoring functions
- experimental constraints can be key in producing close native models
- NMR, FRET
- Chemical cross linking coupled to mass spectronetry (XUMS) is another means to obtain distance information
- Often a flexible linear cross sinker molecule with reactive ester sites on bothends is used to cross link lysine pairs

- As the cross linker hás a certain length, finding two lysine residues to be cross-linked yields an upper bound on their distance in Cartesian space.

General MS based cross-linking workflow

Rinner, O. et al. Identification of cross-linked peptides from large sequence databases. Nat Methods 5,315-318 (2008)

Introduction-Euclidean Measure

Introduction-Euclidean Measure

Human prothrombin (1dx5-E)

Xwalk - Algorithm I

- PDB Id: 1jek, triple hairpin motif of Visna virus fusion protein

Xwalk - Algorithm II

* Find all lysine residues in structure

Xwalk - Algorithm II

* Find all lysine residues in structure

Xwalk - Algorithm III

- Place a grid on Lys-A
- size of the grid corresponds to the maximum length of cross linker

Xwalk - Algorithm III

- Place a grid on Lys-A
- size of the grid corresponds to the maximum length of cross linker

Xwalk - Algorithm IV

- Label grid cells of ezamine groups

Xwalk-Algorithm V

* Label all grid cells of protein

Xwalk-Algorithm VI

- Label all remaining gific ceells

Xwalk - Algorithm VII

- Breadth-First Search
* Assign grid cells of \&-amine-groups the distance-o

Xwalk - Algorithm VIII

- Assign distances to neighbourthes grid cellis

Xwalk-Algorithm IX

- Assign distances to neighbouringsifi cells

Xwalk - Algorithm X

- Assign distances to neighbouringsifi cells

Xwalk-Algorithm XI

- Read out distance to

www.xwalk.org

Example: ALDOA_RABIT

1. Choose your Running Mode:
© Validation Mode
Validate measured chemical cross-links on a protein 3D structure.
2. Choose your Input File or ID: ?

Upload PDB file (max. 1MB):
Choose File no file selected
or

Production Mode

Predict potential chemical cross-links using a protein 3D structure.

Give protein identifier: \square PDB ID :
3. Set your Cross-Link Parameter:

1st residue in cross-links: Lys \quad,
2nd residue in cross-links: Lys :

Index \begin{tabular}{c|c|c|}
\hline Number of ist

Residue

\quad

Number of and

Residue
\end{tabular}

Neyリs

- Non-polypeptide molecules are removed from PDB files, which could cause Xwalk to crash. (25/06/11)
- A limitation on the maximum number (=150) of SASD calculations for a single protein structure has been placed. This step was necessary to save computer resources on our server as some proteins can have more than 2000 potential vXL. Users still interested in calculating SASD for very large proteins/complexes are advised to download the Xwalk executable.

1. Kahraman, A., Malmström, L. \& Aebersold, R. Xwalk: Computing and Visualizing Distances in Cross-linking Experiments. Bioinformatics 27, 2163-2164 (2011)

XLdock

XLdock

XLdock - Automated Docking Pipeline

- Test Run (Check for errors in submitted structures)
* Relax each protein component of the complex

XLdock - Automated Docking Pipeline

- Test Run (Check for errors in submitted structures)
* Relax each protein component: of the complex
- Choose minimum energy structure of fo relaxation run

Crystal Structure
Intemediate Relaxation

XLdock - Automated Docking Pipeline

- Test Run (Check for errors in submitted structures)
* Relax each protein component of the complex
- Execution time estimation forglobal sampling

$$
\begin{aligned}
& n_{j o b}\left(N I ; d_{j o b}\right) \text {) } N / d_{j o b}
\end{aligned}
$$

XLdock - Automated Docking Pipeline

- Test Run (Check for errors in submitted structures)
* Relax each protein component of the complex
* Execution time estimation for global sampling
* RosettaDock global sampling 100000 decoys in centroid mode

XLdock - Automated Docking Pipeline

- Test Run (Check for errors in submitted structures)
* Relax each protein component of the complex
* Execution time estimation for global sampling
* RosettaDock globalisampling sioo,ooo:decoys in:centroid mode

XLdock - Automated Docking Pipeline

- Test Run (Check for errors in submitted structures)
* Relax each protein component of the complex
- Execution time estimation for global sampling
- RosettaDock global sampling 100000 decoys in centroid mode
- Filtering decoys by SASD with Xwalk
- Extract top:500 decoys withilowest Rosettaiscore

XLdock - Automated Docking Pipeline

- Test Run (Check for errors in submitted structures)
* Relax each protein component of the complex
- Execution time estimation for global sampling
- RosettaDock global sampling 100000 decoys in centroid mode
- Filtering decoys by SASD with Xwalk
* Extract top:500 decoys withilowest Rosetta score
- Filter by:BSA 900 A (Janinetali)

XLdock - Automated Docking Pipeline

- Quality threshold clustering and choosing largest three clusters

XLdock - Automated Docking Pipeline

- Quality threshold clustering and choosing largest three clusters
- Execution time estimation for local sampling
ロ

XLdock - Automated Docking Pipeline

* Quality threshold clustering and choosing largest three clusters
- Execution time estimation for local sampling
- Rosetta local sampling 3×5000 decoys in full atom mode

XLdock - Automated Docking Pipeline

* Quality threshold clustering and choosing largest three clusters
- Execution time estimation for local sampling
* Rosetta local sampling - 3×5000 decoys in full-atom mode

$\begin{aligned} & =\text { native complex } \\ & =\text { decoy }\end{aligned}$

XLdock - Automated Docking Pipeline

* Quality threshold clustering and choosing largest three clusters
- Execution time estimation for local sampling
- Rosetta local sampling 3×5000 decoys in full atomimode
* Filtering decoys by SASD with X wall.

XLdock - Automated Docking Pipeline

- Quality threshold clustering and choosing largest three clusters
* Execution time estimation for local sampling
* Rosetta local sampling -3×5000 decoys in full-atom mode
* Filtering decoys by SASD with Xwalk

$=$ native complex
$=$ decoy

XLdock - Automated Docking Pipeline

- Quality threshold clustering and choosing largest three clusters
- Execution time estimation for local sampling
* Rosetta local sampling 3×5000 decoys in full atom mode
- Filtering decoys by SASD with X wall
- Extract top 500 decoys with:lowest Rosetta score and filter by BSA $>900 A^{2}$

XLdock - Automated Docking Pipeline

- Quality threshold clustering and choosing largest three clusters
- Execution time estimation for local sampling
- Rosetta local sampling 3×5000 decoys in full atomimode
- Filtering decoys by SASD with X wall
- Extract top 500 decoys with lowest Rosetta score and filter by $B S A>900 A^{2}$
- Hierarchal custering with cuister radius $3 \AA$

$$
\text { RMSD }=0.58 \AA
$$

- Complex 1
- Barnase, Barstar (PDBibrs)
* 7 interprotein LYS virtuai XL

Test Cases

- Complex 1
- Barnase, Barstar (PDBibrs)
* 7 interproteint y Sivituatid:
- Complex 2
a Colicin DNA Se Colicinthhibitor (PDB:juj)
- 3 inter protein x 56 intratprotein xt monotinks all experimental

Test Cases

- Complex 1
- Barnase, Barstar (PDBibrs)
* 7 interprotein: Y S Matadex
- Complex 2 :
a. Colicin DNAse Colicin inhibitor (PDB:iuj)

4 3 inter protein x 16 intraprotein X 5 monolinks all expermental

Colicin DNAse-Inhibitor

- Global sampling stage:
- 100,000 decoys in total

Colicin DNAse - Inhibitor

- Global sampling stage:
- 100,000 decoys in total
- 32,539 pass Euclideandistancéfilter

Colicin DNAse - Inhibitor

- Global sampling stage:
* 100,000 decoys in total
* 32,539 pass Euclideandistance filter.
- 8865 pass Xwalk fiter

Colicin DNAse - Inhibitor

- Global sampling stage:
- 100,000 decoys in total
- 32,539 pass Euclideandistancéfilter
- 8865 pass X walkfilter
top 500 decoys

Colicin DNAse - Inhibitor

- Global sampling stage:
- 100,000 decoys in total
- 32,539 pass Euclideandistancéfilter
- 8865 pass X walkfilter

4 top 500 decoys
7 op 3 clustersizes 20,13011

Colicin DNAse-Inhibitor

Cluster1:20
Q

Cluster:2:13

Cluster 3:11

Colicin DNAse - Inhibitor

- Local sampling stage:
* $3 \times 5,000$ decoys in total
* 14,995 pass Euclidean distance filter
- 13,230 pass Xwalk filter
- top 500 decoys
- top 3 cluster sizes:24,20,i6

Colicin DNAse-Inhibitor

- Lowest energy decoy in largest hierarchal cluster of local sampled decoys
- RMSD $=1.78 \AA$

Colicin DNAse-Inhibitor

- Lowest energy decoy in largest hierarchal cluster of local sampled decoys
. $\mathrm{RMSD}=178 \AA$

Acknowledgment

Lars Malmström

Ruediacbersold

Funding

FranzHerzog

