
PyRosetta 2.011

Sergey Lyskov & Brian Weitzner
 GrayLab @ JHU
RosettaCon 2011

Monday, August 1, 11



Monday, August 1, 11



Build System

Monday, August 1, 11



InheritanceBuild System

Monday, August 1, 11



InheritanceBuild System

Community

Monday, August 1, 11



Build System

Monday, August 1, 11



Build SystemOld

Monday, August 1, 11



Build SystemOld

Monday, August 1, 11



Problems with this approach:

Build SystemOld

Monday, August 1, 11



• PyGCCXML and Py++ have a different 
philosophy than PyRosetta and we 
depend on them to fix bugs

Problems with this approach:

Build SystemOld

Monday, August 1, 11



• PyGCCXML and Py++ have a different 
philosophy than PyRosetta and we 
depend on them to fix bugs

• No automatic subclassing. User can not 
inherit and re-use arbitrary Rosetta 
class.

Problems with this approach:

Build SystemOld

Monday, August 1, 11



• PyGCCXML and Py++ have a different 
philosophy than PyRosetta and we 
depend on them to fix bugs

• No automatic subclassing. User can not 
inherit and re-use arbitrary Rosetta 
class.

• Can not use newer compilers, have to 
use GCCXML therefore limiting our 
options.

Problems with this approach:

Build SystemOld

Monday, August 1, 11



Build SystemOldNew

Monday, August 1, 11



NewBuild SystemOld

Monday, August 1, 11



Build SystemNew

Monday, August 1, 11



Build SystemNew

Monday, August 1, 11



Build SystemNew

Removing PyGCCXML and 
PyPlusPlus allows us to: 

Monday, August 1, 11



Build SystemNew

• Parallel builds. Full rebuild on modern 
workstation takes only ~20-30min. (was 
6hrs before!)

Removing PyGCCXML and 
PyPlusPlus allows us to: 

Monday, August 1, 11



Build SystemNew

• Parallel builds. Full rebuild on modern 
workstation takes only ~20-30min. (was 
6hrs before!)

• PyRosetta classes are first class citizens

Removing PyGCCXML and 
PyPlusPlus allows us to: 

Monday, August 1, 11



Build SystemNew

• Parallel builds. Full rebuild on modern 
workstation takes only ~20-30min. (was 
6hrs before!)

• PyRosetta classes are first class citizens

• Clang support 

Removing PyGCCXML and 
PyPlusPlus allows us to: 

Monday, August 1, 11



Build SystemNew

• Parallel builds. Full rebuild on modern 
workstation takes only ~20-30min. (was 
6hrs before!)

• PyRosetta classes are first class citizens

• Clang support 

• Future: drop GCCXML and move to 
Clang++ when it is mature.

Removing PyGCCXML and 
PyPlusPlus allows us to: 

Monday, August 1, 11



Build SystemNew

Monday, August 1, 11



Setting up a build environment for PyRosetta is SUPER easy

Monday, August 1, 11



Setting up a build environment for PyRosetta is SUPER easy

This will:

$ svn co https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
$ ./DeployPyRosetta.py 

Monday, August 1, 11

https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
https://svn.rosettacommons.org/source/trunk/PyRosetta.develop


Setting up a build environment for PyRosetta is SUPER easy

This will:

$ svn co https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
$ ./DeployPyRosetta.py 

Monday, August 1, 11

https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
https://svn.rosettacommons.org/source/trunk/PyRosetta.develop


Setting up a build environment for PyRosetta is SUPER easy

This will:

• Build and setup (locally, no root access is required) CMake, 
GCCXML, Boost, Py++, PyGCCXML [and currently in the 
works Clang]

$ svn co https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
$ ./DeployPyRosetta.py 

Monday, August 1, 11

https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
https://svn.rosettacommons.org/source/trunk/PyRosetta.develop


Setting up a build environment for PyRosetta is SUPER easy

This will:

• Build and setup (locally, no root access is required) CMake, 
GCCXML, Boost, Py++, PyGCCXML [and currently in the 
works Clang]

• Check out copy of mini, create ‘BuildPyRosetta.sh’ script 
inside it (which has reference to build env. and later can be 
used with any copy of mini)

$ svn co https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
$ ./DeployPyRosetta.py 

Monday, August 1, 11

https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
https://svn.rosettacommons.org/source/trunk/PyRosetta.develop


Setting up a build environment for PyRosetta is SUPER easy

This will:

• Build and setup (locally, no root access is required) CMake, 
GCCXML, Boost, Py++, PyGCCXML [and currently in the 
works Clang]

• Check out copy of mini, create ‘BuildPyRosetta.sh’ script 
inside it (which has reference to build env. and later can be 
used with any copy of mini)

$ svn co https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
$ ./DeployPyRosetta.py 

Monday, August 1, 11

https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
https://svn.rosettacommons.org/source/trunk/PyRosetta.develop


Setting up a build environment for PyRosetta is SUPER easy

This will:

• Build and setup (locally, no root access is required) CMake, 
GCCXML, Boost, Py++, PyGCCXML [and currently in the 
works Clang]

• Check out copy of mini, create ‘BuildPyRosetta.sh’ script 
inside it (which has reference to build env. and later can be 
used with any copy of mini)

• Build PyRosetta.

$ svn co https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
$ ./DeployPyRosetta.py 

Monday, August 1, 11

https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
https://svn.rosettacommons.org/source/trunk/PyRosetta.develop


Classes available in PyRosetta

Monday, August 1, 11



Classes available in PyRosetta

Bound

Unbound

PyRosetta 1.1 
provided access to 
580 Rosetta 
classes

Monday, August 1, 11



Classes available in PyRosetta

Bound

Unbound

PyRosetta 1.1 
provided access to 
580 Rosetta 
classes

PyRosetta 2.0’s new 
build system has 
allowed us to bind 
many more classes

Monday, August 1, 11



Classes available in PyRosetta

Bound

Unbound
Bound

Unbound

PyRosetta 1.1 
provided access to 
580 Rosetta 
classes

PyRosetta 2.0’s new 
build system has 
allowed us to bind 
many more classes

Over 90% of 
Rosetta’s 3,000 
classes are available 
in PyRosetta

Monday, August 1, 11



Build System

Monday, August 1, 11



Inheritance

Monday, August 1, 11



Demo

Monday, August 1, 11



Inheritance

Monday, August 1, 11



Community

Monday, August 1, 11



We test and provide binaries for:

Monday, August 1, 11



We test and provide binaries for:

32/64 Bit Scientific Linux 64

Mac OS X Snow Leopard Mac OS X Lion

Monday, August 1, 11



We test and provide binaries for:

32/64 Bit Scientific Linux 64

Mac OS X Snow Leopard Mac OS X Lion

Monday, August 1, 11



We test and provide binaries for:

32/64 Bit Scientific Linux 64

Mac OS X Snow Leopard Mac OS X Lion

Monday, August 1, 11



Do people use PyRosetta?

Monday, August 1, 11



Do people use PyRosetta?

• Each day, we get approximately 45 unique 
visitors to our web site (www.PyRosetta.org)

Monday, August 1, 11

http://www.PyRosetta.org
http://www.PyRosetta.org


Do people use PyRosetta?

• Each day, we get approximately 45 unique 
visitors to our web site (www.PyRosetta.org)

• Since January, over 400 new academic 
licenses were issued. This means there are 
2-3 new PyRosetta users every day!

Monday, August 1, 11

http://www.PyRosetta.org
http://www.PyRosetta.org


Do people use PyRosetta?

• Each day, we get approximately 45 unique 
visitors to our web site (www.PyRosetta.org)

• Since January, over 400 new academic 
licenses were issued. This means there are 
2-3 new PyRosetta users every day!

• Each week we getting several posts at 
RosettaCommons forums as well as 
personal emails.

Monday, August 1, 11

http://www.PyRosetta.org
http://www.PyRosetta.org


Welcoming New Users

• We now can use mini trunk version which allows us 
to help users much faster.

• PyAsserts

• Help!

Monday, August 1, 11



Summary, things that improved 
since last year

Monday, August 1, 11



Summary, things that improved 
since last year

• New build system makes almost all C++ 
objects accessible in Python

Monday, August 1, 11



Summary, things that improved 
since last year

• New build system makes almost all C++ 
objects accessible in Python

• Support for proper base classes and 
subclassing in Python: It is now possible to 
extend Rosetta via Python

Monday, August 1, 11



Summary, things that improved 
since last year

• New build system makes almost all C++ 
objects accessible in Python

• Support for proper base classes and 
subclassing in Python: It is now possible to 
extend Rosetta via Python

• Steadily increasing community of PyRosetta 
users

Monday, August 1, 11



Future goals

Monday, August 1, 11



Future goals
• Separate PyRosetta source code generation and 

compiling phases. This should allow us to port 
PyRosetta to platforms that are unfriendly to GNU tool-
chain.

Monday, August 1, 11



Future goals
• Separate PyRosetta source code generation and 

compiling phases. This should allow us to port 
PyRosetta to platforms that are unfriendly to GNU tool-
chain.

• Extend Library of scripts aka ‘Protocol demos’. (Would 
be great if PyRosetta demo could be added to 
publishing requirements)

Monday, August 1, 11



Future goals
• Separate PyRosetta source code generation and 

compiling phases. This should allow us to port 
PyRosetta to platforms that are unfriendly to GNU tool-
chain.

• Extend Library of scripts aka ‘Protocol demos’. (Would 
be great if PyRosetta demo could be added to 
publishing requirements)

• Build-time test for detecting commits that break 
PyRosetta (undefined functions, unconventional 
namespaces, etc.)

Monday, August 1, 11



Acknowledgments

Evan Baugh Brian Weitzner

Robert Schleif Jeffrey Gray

Monday, August 1, 11



Huge Thanks to Steven Lewis 
who constantly answers questions on 

RosettaCommons forums and 
redirects PyRosetta specific 

questions to me!

Without his help we would be able to 
provide only a fraction of support 

available now.
21

Monday, August 1, 11



22

Thank you!

Monday, August 1, 11



23

Monday, August 1, 11



Buckle up your seatbelts, technical slides ahead!

Monday, August 1, 11



How did we solve subclassing problem?

Monday, August 1, 11



How did we solve subclassing problem?

The problem Function argument in C++ is allocated on stack; to appear in PyRosetta it 
needs to be copied to heap-allocated-memory. This leads to:

Monday, August 1, 11



How did we solve subclassing problem?

The problem Function argument in C++ is allocated on stack; to appear in PyRosetta it 
needs to be copied to heap-allocated-memory. This leads to:

A. Slooooowness (Some objects are large so copying takes time!)

Monday, August 1, 11



How did we solve subclassing problem?

The problem Function argument in C++ is allocated on stack; to appear in PyRosetta it 
needs to be copied to heap-allocated-memory. This leads to:

A. Slooooowness (Some objects are large so copying takes time!)

B. In C++ if you pass object by reference - you can modify it, but if you work with a 
copy of an object - you can’t do it! This makes impossible to write functions like 
mover.apply and many others!

Monday, August 1, 11



How did we solve subclassing problem?

The problem Function argument in C++ is allocated on stack; to appear in PyRosetta it 
needs to be copied to heap-allocated-memory. This leads to:

A. Slooooowness (Some objects are large so copying takes time!)

B. In C++ if you pass object by reference - you can modify it, but if you work with a 
copy of an object - you can’t do it! This makes impossible to write functions like 
mover.apply and many others!

Perfect Solution: all function arguments are OP. Requires to change every 
single function in mini! - this would be Perfect in a Perfect world but in Practical world 
it’s Practically impossible!

Monday, August 1, 11



How did we solve subclassing problem?

The problem Function argument in C++ is allocated on stack; to appear in PyRosetta it 
needs to be copied to heap-allocated-memory. This leads to:

A. Slooooowness (Some objects are large so copying takes time!)

B. In C++ if you pass object by reference - you can modify it, but if you work with a 
copy of an object - you can’t do it! This makes impossible to write functions like 
mover.apply and many others!

Perfect Solution: all function arguments are OP. Requires to change every 
single function in mini! - this would be Perfect in a Perfect world but in Practical world 
it’s Practically impossible!

Interim Solution: Subclass original class, overload virtual functions, convert arguments 
to AP, and write code for each class that would allow to subclass it in PyRosetta. 
Problem with this approach: even if we write this for ~3000 classes it would be 
impossible to keep up with mainstream changes! 

Monday, August 1, 11



How did we solve subclassing problem?

The problem Function argument in C++ is allocated on stack; to appear in PyRosetta it 
needs to be copied to heap-allocated-memory. This leads to:

A. Slooooowness (Some objects are large so copying takes time!)

B. In C++ if you pass object by reference - you can modify it, but if you work with a 
copy of an object - you can’t do it! This makes impossible to write functions like 
mover.apply and many others!

Perfect Solution: all function arguments are OP. Requires to change every 
single function in mini! - this would be Perfect in a Perfect world but in Practical world 
it’s Practically impossible!

Interim Solution: Subclass original class, overload virtual functions, convert arguments 
to AP, and write code for each class that would allow to subclass it in PyRosetta. 
Problem with this approach: even if we write this for ~3000 classes it would be 
impossible to keep up with mainstream changes! 

Monday, August 1, 11



The Solution

Monday, August 1, 11



The Solution
• For each class in mini automatically generate subclass and overload all public virtual 

functions.

Monday, August 1, 11



The Solution
• For each class in mini automatically generate subclass and overload all public virtual 

functions.

• For each overloaded function examine the types of arguments that it receives and generate 
code to convert it to AP. Then generate code for new virtual functions that have AP for all 
their arguments. The resulting function will be overload-able in PyRosetta. 

Monday, August 1, 11



The Solution
• For each class in mini automatically generate subclass and overload all public virtual 

functions.

• For each overloaded function examine the types of arguments that it receives and generate 
code to convert it to AP. Then generate code for new virtual functions that have AP for all 
their arguments. The resulting function will be overload-able in PyRosetta. 

• Our final code can do the following automatically:

Monday, August 1, 11



The Solution
• For each class in mini automatically generate subclass and overload all public virtual 

functions.

• For each overloaded function examine the types of arguments that it receives and generate 
code to convert it to AP. Then generate code for new virtual functions that have AP for all 
their arguments. The resulting function will be overload-able in PyRosetta. 

• Our final code can do the following automatically:

• Subclass ~2700 mini classes (replicate public constructors and call original 
constructors).

Monday, August 1, 11



The Solution
• For each class in mini automatically generate subclass and overload all public virtual 

functions.

• For each overloaded function examine the types of arguments that it receives and generate 
code to convert it to AP. Then generate code for new virtual functions that have AP for all 
their arguments. The resulting function will be overload-able in PyRosetta. 

• Our final code can do the following automatically:

• Subclass ~2700 mini classes (replicate public constructors and call original 
constructors).

• Overload all public virtual functions, examine arguments and convert them to AP so 
original virtual functions now act as 'proxy' between mini and Python.

Monday, August 1, 11



The Solution
• For each class in mini automatically generate subclass and overload all public virtual 

functions.

• For each overloaded function examine the types of arguments that it receives and generate 
code to convert it to AP. Then generate code for new virtual functions that have AP for all 
their arguments. The resulting function will be overload-able in PyRosetta. 

• Our final code can do the following automatically:

• Subclass ~2700 mini classes (replicate public constructors and call original 
constructors).

• Overload all public virtual functions, examine arguments and convert them to AP so 
original virtual functions now act as 'proxy' between mini and Python.

• Adapt all these subclasses so they can be used as ‘call-back’ structure to allow 
subclassing in Python.

Monday, August 1, 11



Explain How Subclassing work

 

Monday, August 1, 11



Subclasses in PyRosetta

Monday, August 1, 11



Subclasses in PyRosetta

• Before in PyRosetta 1.1 to allow subclassing in PyRosetta 
hand written was needed. For average class it took ~1hr of 
work plus it would require some effort to keep it in-sync with 
the main trunk. Now take in to account number of classes in 
mini and its easy to see how this approach became a 
problem.

Monday, August 1, 11



Subclasses in PyRosetta

• Before in PyRosetta 1.1 to allow subclassing in PyRosetta 
hand written was needed. For average class it took ~1hr of 
work plus it would require some effort to keep it in-sync with 
the main trunk. Now take in to account number of classes in 
mini and its easy to see how this approach became a 
problem.

• Also, due to constraints of build system it was hard-
impossible to set correct base which lead to situation when 
inherited classes in PyRosetta would lack some virtual 
functions of a base classes.

Monday, August 1, 11



Subclasses in PyRosetta

• Before in PyRosetta 1.1 to allow subclassing in PyRosetta 
hand written was needed. For average class it took ~1hr of 
work plus it would require some effort to keep it in-sync with 
the main trunk. Now take in to account number of classes in 
mini and its easy to see how this approach became a 
problem.

• Also, due to constraints of build system it was hard-
impossible to set correct base which lead to situation when 
inherited classes in PyRosetta would lack some virtual 
functions of a base classes.

• Now all this done automatically for all classes in mini. So all 
classes could be inherited in PyRosetta.

Monday, August 1, 11


