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• PyGCCXML and Py++ have a different 
philosophy than PyRosetta and we 
depend on them to fix bugs

• No automatic subclassing. User can not 
inherit and re-use arbitrary Rosetta 
class.

• Can not use newer compilers, have to 
use GCCXML therefore limiting our 
options.

Problems with this approach:

Build SystemOld
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Build SystemNew

• Parallel builds. Full rebuild on modern 
workstation takes only ~20-30min. (was 
6hrs before!)

• PyRosetta classes are first class citizens

• Clang support 

• Future: drop GCCXML and move to 
Clang++ when it is mature.

Removing PyGCCXML and 
PyPlusPlus allows us to: 
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Setting up a build environment for PyRosetta is SUPER easy

This will:

• Build and setup (locally, no root access is required) CMake, 
GCCXML, Boost, Py++, PyGCCXML [and currently in the 
works Clang]

• Check out copy of mini, create ‘BuildPyRosetta.sh’ script 
inside it (which has reference to build env. and later can be 
used with any copy of mini)

• Build PyRosetta.

$ svn co https://svn.rosettacommons.org/source/trunk/PyRosetta.develop
$ ./DeployPyRosetta.py 
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Classes available in PyRosetta

Bound

Unbound
Bound

Unbound

PyRosetta 1.1 
provided access to 
580 Rosetta 
classes

PyRosetta 2.0’s new 
build system has 
allowed us to bind 
many more classes

Over 90% of 
Rosetta’s 3,000 
classes are available 
in PyRosetta
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Do people use PyRosetta?

• Each day, we get approximately 45 unique 
visitors to our web site (www.PyRosetta.org)

• Since January, over 400 new academic 
licenses were issued. This means there are 
2-3 new PyRosetta users every day!

• Each week we getting several posts at 
RosettaCommons forums as well as 
personal emails.
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Welcoming New Users

• We now can use mini trunk version which allows us 
to help users much faster.

• PyAsserts

• Help!
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Summary, things that improved 
since last year

• New build system makes almost all C++ 
objects accessible in Python

• Support for proper base classes and 
subclassing in Python: It is now possible to 
extend Rosetta via Python

• Steadily increasing community of PyRosetta 
users
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Future goals
• Separate PyRosetta source code generation and 

compiling phases. This should allow us to port 
PyRosetta to platforms that are unfriendly to GNU tool-
chain.

• Extend Library of scripts aka ‘Protocol demos’. (Would 
be great if PyRosetta demo could be added to 
publishing requirements)

• Build-time test for detecting commits that break 
PyRosetta (undefined functions, unconventional 
namespaces, etc.)
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The Solution
• For each class in mini automatically generate subclass and overload all public virtual 

functions.

• For each overloaded function examine the types of arguments that it receives and generate 
code to convert it to AP. Then generate code for new virtual functions that have AP for all 
their arguments. The resulting function will be overload-able in PyRosetta. 

• Our final code can do the following automatically:

• Subclass ~2700 mini classes (replicate public constructors and call original 
constructors).

• Overload all public virtual functions, examine arguments and convert them to AP so 
original virtual functions now act as 'proxy' between mini and Python.

• Adapt all these subclasses so they can be used as ‘call-back’ structure to allow 
subclassing in Python.
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• Before in PyRosetta 1.1 to allow subclassing in PyRosetta 
hand written was needed. For average class it took ~1hr of 
work plus it would require some effort to keep it in-sync with 
the main trunk. Now take in to account number of classes in 
mini and its easy to see how this approach became a 
problem.
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Subclasses in PyRosetta

• Before in PyRosetta 1.1 to allow subclassing in PyRosetta 
hand written was needed. For average class it took ~1hr of 
work plus it would require some effort to keep it in-sync with 
the main trunk. Now take in to account number of classes in 
mini and its easy to see how this approach became a 
problem.

• Also, due to constraints of build system it was hard-
impossible to set correct base which lead to situation when 
inherited classes in PyRosetta would lack some virtual 
functions of a base classes.

• Now all this done automatically for all classes in mini. So all 
classes could be inherited in PyRosetta.
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