Automated Selection of Stabilizing Mutations by **V**oid **I**dentification and **P**acking

Benjamin Borgo
Havranek Lab @ Washington
University

Fixed backbone design leads to models which differ from native structures

 Single iteration of fixedbb design/relaxation improves Rosetta energy

Number of buried
 unsatisfied hydrogen
 bonds is worse in designed
 proteins than crystal
 structures

 RosettaHoles packing quality is greatly decreased in designed proteins

How can we improve packing prior to experimental characterization?

Strategy:

- Use RosettaHoles to identify buried, unfilled voids
- Reduce designable residue set to adjacent residues
- Require a score function which will permit more clash (ie softer) but not ignore local steric complementarity
- Fixed bb, but predictive of mutations which become favorable upon relaxation

Gaussian Overlap Energy

Atoms treated as spherical Gaussian distributions

$$E_{goe} = \int_{-\infty}^{\infty} \rho(r_1, R_1) \rho(r_2, R_2) dr$$

 Implemented as replacement for LJ rep in a minimal SF

$$E_{GOE} = w_1 E_{goe} - w_2 E_{LJ,atr} + w_3 E_{hSASA}$$

Computational Validation

Native Recovery

- -- Is native aa favorable in mutant background?
- -- Is rotamer correct?

GOE Soft_Rep Correct 84% 48%

Computational Validation

Native Recovery

- -- Is native aa favorable in mutant background?
- -- Is rotamer correct?

GOE Soft_Rep Correct 84% 48%

Positive Test Set

-- Is known stable mutant favorable?

GOE Soft_Rep Correct 93% 43%

Negative Test Set

-- Is known destabilizing, small->large mutant favorable?

GOE Soft_Rep Correct 77% 95%

RosettaVIP

Experimental Validation

doi:10.1016/S0022-2836(03)00888-X

J. Mol. Biol. (2003) 332, 449-460

Available online at www.sciencedirect.com

A Large Scale Test of Computational Protein Design: Folding and Stability of Nine Completely Redesigned Globular Proteins

Gautam Dantas¹†, Brian Kuhlman¹†, David Callender¹ Michelle Wong¹ and David Baker^{1,2*}

- Full redesign of 9 small, globular proteins
- Experimental characterization ->
 - Most stabilized wrt WT
 - Lambda Repressor

Experimental Validation: Design Recovery

• Lambda Repressor (Dantas et al., JMB 2003)

Designed Sequence Alignment

RosettaVIP Efficiently Rescues A Less than Perfect Design

- Packing: .53

- RosettaE: -216.7

- Packing: .71

- RosettaE: -221.4

Cooperativity is Recovered

- Cooperative folding is recovered
- Stability is increased over both original design and wild-type

Experimental Validation

doi:10.1016/S0022-2836(03)00888-X

J. Mol. Biol. (2003) 332, 449-460

Available online at www.sciencedirect.com

A Large Scale Test of Computational Protein Design: Folding and Stability of Nine Completely Redesigned Globular Proteins

Gautam Dantas¹†, Brian Kuhlman¹†, David Callender¹ Michelle Wong¹ and David Baker^{1,2*}

- Full redesign of 9 small, globular proteins
- Experimental characterization ->
 - Most stabilized wrt WT
 - Lambda Repressor
 - Protein L

Experimental Validation: Design Improvement

• Protein L (Dantas et al., JMB 2003)

Designed Sequence Alignment

42% Sequence Identity
 with native
 Tm ~ 100 deg

Stability is increased, cooperativity maintained

RosettaVIP Efficiently Improves A Neutral Design

Packing: .58 Packing: .66

Experimental Validation: Stabilization of a mesophilic enzyme

RosettaVIP improves packing away from active site

Stability Significantly Increased

Conclusions

- Results from automated designed of proteins exhibit notable packing defects
- RosettaVIP identifies and fixes some of these defects
- Fixing defects which negatively impact
 RosettaHoles packing scores significantly improves the stability of designed proteins