

at the start: metal binding site issues

requires secondary matching or many placements

- because HIS - metal bonds can rotate can't ask for multi-residue constraints (like bond angle above)

at the start: metal binding site issues

also, in this case, you miss most matches
because of coordinate frame rotation mismatch

enumerative matching

foreach bb position: foreach his I_chil: foreach his I_chi2:
foreach bb position:
foreach his2_chil:
foreach his2_chi2:
if hisl \& his2 form a metal clamp: HIT!

enumerative matching

foreach bb position: foreach his I_chil: foreach his I_chi2:
foreach bb position:
foreach his2_chil:
foreach his2_chi2:
if his I \& his2 form a metal clamp: HIT!
but isn't this horribly slow?

branch \& bound

foreach bb position: foreach hisl_chil:
if impossible: break foreach hisl_chi2:
if impossible: break foreach bb position: if impossible: break foreach his2_chil: if impossible: break foreach his2_chi2:
if hisl \& his2 form a metal clamp: HIT!

branch \& bound: if impossible: break

locus of oxygen positions:Asp

Comparison with RosettaMatch

secondary matching

RosettaMatch Setup:
primary matching on I residue secondary matching on 2 residues
(unfixed DOFs require secondary matching or many many placements)

RESULTS

RosettaMatch:
50 matches 600sec runtime 2 gb memory

B\&B Enumerative Matching: 3063 matches 109s runtime 300 mb memory

What about a bigger theozyme?

$2 \times$ Arg: bidentate interaction w/ ligand $2 \times$ Asp/Glu: backing up Arg
IxAsp/Glu: rotatable hbond to ligand Ix Lys: rotatable hbond to ligand

6 residues
up to 24 rotatable angles!
thanks to Florian Richter!

bigger theozyme?

What about a bigger theozyme?

for >2 rotatable bonds (chi or other), enumerative method doesn't work

Asp

Glu

What about a bigger theozyme?

for >2 rotatable bonds (chi or other), enumerative method doesn't work
foreach bb position:
foreach hisl_chil:
if impossible: break
foreach his I_chi2:
if impossible: break
foreach bb position:
if impossible: break
foreach his2_chil:
if impossible: break
foreach his2_chi2:
if hisl \& his2 form a metal clamp: HIT!

The solution: Inverse Kinematics

Thanks Evangelos A. Coutsias \& Dan Mandel!!

Inverse Kinematics:

You've seen this before...

loop closure

formulating side chain / ligand placement as inverse kinematics

building up a match

KinMatch Prototype Results!

Going of rotamer: lots more matches

num uniq seq matches

num 'uniq' matches

RosettaMatch

KinMatch Prototype

Quality of Geometry, Interactions

Quality of Geometry, Internal Energy

computational issues: speed

computational issues: memory

PID USER	PR	NI	VIRT RES	SHR		\%CPU	SMEN	TIME+	COMMAND
32537 sheffler	20	0	277m 196m	26m	R	100	1.2	7:31.05	Ikr
346 sheffler	20	0	340 m 299 m	9356	R	32	1.9	0:04.80	cciplus
32710 sheffler	20	0	224m 144m	26m R	R	32	0.9	0:48.12	test_ikr
354 sheffler	20	0	157 m 117 m	9304	R	32	0.7	0:02.32	cciplus
32566 sheffler	20	0	223m 143m	26m	R	31	0.9	3:07.98	test_ik
32554 sheffler	20	0	235m 155m	26 m	R	31	1.0	2:54.56	
32746 sheffler	20	0	400 m 359 m	9448	R	31	2.2	0:18.01	cc1plus
342 sheffler	20	0	321 m 281 m	9212	R	30	1.8	0:04.83	cc1plus
32570 sheffler	20	0	221m 141m	26 m	R	29	0.9	2:49.78	test_ik
32558 sheffler	20	0	220 m 140 m	25m R	R	28	0.9	3:34.78	est_ik
32754 sheffler	20	0	408 m 367 m	8572	R	27	2.3	0:09.71	ciplus
32540 sheffler	20	0	213 m 132 m	25mR	R	25	0.8	4:49.78	test_ik
32708 sheffler	20	0	208m 127m	25m	R	25	0.8	1:21.22	-
32545 sheffler	20	0	231m 151m	26 mR	R	24	0.9	3:40.63	tes
362 sheffler	20	0	135 m 95m	8856 R	R	24	0.6	0:00.74	ceiplus
358 sheffler	20	0	129 m 89 m	9100 R	R	23	0.6	0:01.43	cc1plus
338 sheffler	20	0	285m 243m	9144 R	R	23	1.5	0:03.94	cc1plus
32686 sheffler	20	0	211m 130m	25m R	R	11	0.8	0:14.78	test_1k
32666 sheffler	20	0	211m 131m	25 mR	R	7	0.8	0:29.71	test_ikr
32669 sheffler	20	0	211m 130m	25 mR	R	7	0.8	0:15.79	est_
32674 sheffler	20	0	211m 130m	25 mR	R	7	0.8	0:15.32	test_1k
32663 sheffler	20	0	211m 131m	25m R	R	7	0.8	0:30.82	est_i
32672 sheffler	20	0	211m 130m	25 mR	R	7	0.8	0:19.72	st_ik
32678 sheffler	20	0	211m 130m	25 mR	R	7	0.8	0:19.29	st
32681 sheffler	20	0	211m 130m	25 mR	R	7	0.8	0:14.88	-
32689 sheffler	20	0	211m 130m	25 mR	R	7	0.8	0:14.56	st
32668 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:12.64	test_1k
32670 she	20	0	211m 131m	25 mR		6	0.8	0:26.62	test
32671 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:12.30	
32675 sheffler	20	0	211m 130m	25 mR		6	0.8	0:12.01	st_
32680 sheffler	20	0	211 m 130 m	25 mR	R	6	0.8	0:11.73	test_ik
32683 sheffler	20	0	211 m 130 m	25 mR	R	6	0.8	0:11.59	
32685 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:11.50	
32693 sheffler	20	0	211 m 130 m	25 mR	R	6	0.8	0:11.25	
32694 sheffler	20	0	211m 130m	25 mR		6	0.8	0:11.22	test_ik
32699 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:14.82	est
32665 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:13.31	est_
32698 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:11.10	st
32700 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:11.05	,
32682 sheffler	20	0	211 m 130 m	25 mR	R	6	0.8	0:14.64	st
32687 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:14.42	st
32688 sheffler	20	0	211 m 130 m	25 mR		6	0.8	0:14.40	est
32691 sheffler	20	0	211m 130m	25m R	R	6	0.8	0:19.95	st
32697 sheffler	20	0	211m 130m	25m R		6	0.8	0:19.79	st_
32701 sheffler	20	0	211 m 130 m	25 mR	R	6	0.8	0:19.70	st_ikr
32703 sheffler	20	0	211m 130m	25 mR	R	6	0.8	0:19.64	est
32676 sheffler	20	0	211m 130m	25 mR	R	5	0.8	0:14.94	est
32673 sheffler	20	0	211 m 130 m	25 mR	R	5	0.8	0:12.76	st
32684 sheffler	20	0	211m 130m	25m R		5	0.8	0:12.10	,
32690 sheffler	20	0	211m 130m	25m R	R	5	0.8	0:11.88	test_i
32702 sheffler	20	0	211m 130m	25m R		5	0.8	0:11.55	st_i
32664 sheffler	20	0	211m 130m	25 mR	R	5	0.8	0:14.21	est_i
32677 sheffler	20	0	211m 130m	25 mR		5	0.8	0:12.46	st_i
32695 sheffler	20	0	211m 130m	25m R	R	5	0.8	0:11.72	rest_ikr
32696 sheffler	20	0	211m 130m	25 mR	R	5	0.8	0:11.70	st_i
32667 sheffler	20	0	211m 130m	25m R		4	0.8	0:13.44	+
32679 sheffler	20	0	211m 130m	25 mR		4	0.8	0:12.33	
	20								

Conclusions

	short residues $(I-2 \mathrm{CHI})$	long residues $(3-4+\mathrm{CHI})$	GPU?
Enumeration	great	terrible	probably
Inverse kinematics	$? ? ?$	great	maybe

Possible way forward:
use I.K. to do "primary" matching on pairs use light-weight enumeration for 2ndary matching more testing, obviously.... volunteers?

Acknowledgements

Florian Richter
Andrew LF
Evangelos A. Coutsias \& Dan Mandell
Jeremy Mills
David Baker
Baker Lab

